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Introduction: Alzheimer’s disease (AD) is neurodegenerative dementia that

causes neurovascular dysfunction and cognitive impairment. Currently, 50

million people live with dementia worldwide, and there are nearly 10 million

new cases every year. There is a need for relatively less costly and more

objective methods of screening and early diagnosis.

Methods: Functional near-infrared spectroscopy (fNIRS) systems are a

promising solution for the early Detection of AD. For a practical clinically

relevant system, a smaller number of optimally placed channels are clearly

preferable. In this study, we investigated the number and locations of the best-

performing fNIRS channels measuring prefrontal cortex activations. Twenty-

one subjects diagnosed with AD and eighteen healthy controls were recruited

for the study.

Results: We have shown that resting-state fNIRS recordings from a small

number of prefrontal locations provide a promisingmethodology for detecting

AD and monitoring its progression. A high-density continuous-wave fNIRS

system was first used to verify the relatively lower hemodynamic activity in

the prefrontal cortical areas observed in patients with AD. By using the episode

averaged standard deviation of the oxyhemoglobin concentration changes as

features that were fed into a Support Vector Machine; we then showed that

the accuracy of subsets of optical channels in predicting the presence and

severity of AD was significantly above chance. The results suggest that AD

can be detected with a 0.76 sensitivity score and a 0.68 specificity score while

the severity of AD could be detected with a 0.75 sensitivity score and a 0.72

specificity score with ≤5 channels.

Discussion: These scores suggest that fNIRS is a viable technology for

conveniently detecting and monitoring AD as well as investigating underlying

mechanisms of disease progression.
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Introduction

Alzheimer’s disease (AD) is the most common cause of

dementia in the elderly which impacts 50 million people

worldwide (Bonilauri et al., 2020). Functional abnormalities

in AD likely start long before its clinical symptoms, which

primarily affect executive and visuospatial abilities. Practical

fNIRS systems are a promising solution for the early detection of

AD because they can make quick and affordable measurements

without requiring expert operators. In addition, methods based

on functional measurements do not rely on patients’ ability to

respond to questions or follow test instructions. Medication and

other therapies administered from early stages can retard disease

progression and improve patients’ quality of life. Currently, the

diagnosis of AD relies heavily on clinical examination and tests

administered by expert clinicians. Therefore, there is a need for

relatively less costly and more objective methods of screening

and early diagnosis.

Functional near-infrared spectroscopy (fNIRS) measures

neural activity by detecting the changes in oxy- and

deoxyhemoglobin concentration in the upper layers of the

cortex (Yücel et al., 2021). Each light source and detector pair

placed on the scalp provides an optical channel that samples the

effects of cerebral blood flow and metabolism directly below the

midpoint of the source–detector pair. For a practical clinically

relevant system, a smaller number of optimally placed channels

are clearly preferable. In this study, we investigated the number

and locations of the best-performing fNIRS channels measuring

resting-state activity in the prefrontal cortex (PFC). The PFC

is closely associated with the high-level abilities that decline in

AD (Bu et al., 2019), and resting-state recordings are easier to

obtain since some patients may not be able to perform tasks.

Fortunately, the PFC is also a relatively easier target for fNIRS as

there is little or no hair on the forehead to impede light coupling.

In order to have a wide range of locations to choose from, we

used a high-density fNIRS system with 48 channels with

3.35-cm source–detector separation distances. This was shown

to be the most effective separation distance in a previous study

using our device (Keles et al., 2021). Resting-state recordings

were collected from 21 patients and 18 healthy controls, who

also completed standard neuropsychological tests.

Most studies on the applications of fNIRS in AD have

addressed tissue oxygenation (van Beek et al., 2012; Viola et al.,

2013; Babiloni et al., 2014; Liu et al., 2014; Marmarelis et al.,

2017; Chiarelli et al., 2021), functional connectivity (Li X. et al.,

2018; Nguyen et al., 2019; Niu et al., 2019; Zeller et al., 2019),

and brain function during task performance (Hock et al., 1996;

Fallgatter et al., 1997; Tomioka et al., 2009; Yeung et al., 2016;

Ateş et al., 2017; Nguyen et al., 2019; Niu et al., 2019; Perpetuini

et al., 2019). For example, a statistically significant correlation

between Mini-Mental State Examination (MMSE) scores and

reduced tissue oxygenation was found, and tissue oxygenation

was proposed as a prognosticmarker of aMCI (Viola et al., 2013).

Recent studies have also shown the utility of resting-

state optical imaging for characterizing AD-related cortical

functional reorganization. In a study of patients with MCI and

healthy controls, it was found that the MCI group had higher

right and inter-hemispheric connectivity during the resting

state, but lower left and inter-hemispheric connectivity during

verbal fluency tasks (Nguyen et al., 2019). Another group has

found that patients with MCI showed a decreased resting-state

connectivity in the PFC (Bu et al., 2019) and patients with

MCI and healthy elderly controls showed lower amplitude low-

frequency oscillations (0.07–0.11Hz) measured with fNIRS in

the frontal cortex when compared with young subjects (Zeller

et al., 2019). The classification of AD, MCI, and normal controls

was also studied with fNIRS. In the classification study, it was

shown that there were significant correlations between cognitive

functions and DLPFC in these patient groups (Yang and Hong,

2021). Properties of the functional connectivity network showed

significant correlations with neuropsychological test scores

and derived features achieved a high three-class classification

accuracy (95.0%) (Kim et al., 2021). Another study used

fNIRS and deep learning to distinguish not only between

healthy and Alzheimer’s afflicted subjects but also subjects with

asymptomatic AD and dementia due to AD. They reported

an 86.8% accuracy of the CNN-LSTM network when 5-fold

cross-validated (Ho et al., 2022).

We found reductions in oxygenated hemoglobin in patients

with AD consistent with previous studies. To further analyze

the signals, we assigned univariate priority scores to the optical

channels based on their extent of association with the disease

state of the participants. Then we used subsets of channels

selected from the highest priority channels to predict the

participants’ disease state from the measured signal. In this

study, we used Boston Naming Test and Verbal Memory Total

scores as proxies for AD severity. The results suggest that

AD can be detected with a 0.76 sensitivity score and a 0.68

specificity score while the severity of AD could be detected

with a 0.75 sensitivity score and a 0.72 specificity score. These

were obtained with ≤5 channels on the forehead. Our results

provide evidence that fNIRS is a viable technology for accurately

and conveniently detecting and monitoring AD as well as

investigating the underlying mechanisms of disease progression.

Methods

Participants

Twenty-one subjects diagnosed with AD and eighteen

healthy controls were recruited for the study. The study was

conducted with patients with AD who were followed up in

the Medipol University Hospital Neurology Outpatient Clinic

and fulfilled the inclusion criteria. An experienced neurologist

examined the patients and diagnosed them with AD according
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to the National Institute of Neurological and Communicative

Diseases and Stroke/Alzheimer’s Disease and Related Disorders

Association (NINCDS-ADRDA) criteria (McKhann et al., 1984).

Among the patients diagnosed with clinical AD, those who

were 60 years and older, had Clinical Dementia Rating Scale

(CDR) scores of 1 or 2, used acetylcholinesterase inhibitors

and memantine, and were capable of leading their daily lives

independently were included in the study. Exclusion criteria

were a history of alcohol/substance abuse, mental illnesses

including schizophrenia and delirium, and epileptic seizures,

brain tumors, or trauma. Patients were examined during routine

therapy, where the medical treatment was not modified during

the study period. For the control group, those who were 60

years and older, had MMES scores of ∼25, and no psychiatric

or neurological disorder history was included in the study. The

Research Ethics Board of Medipol University approved this

study (10840098-604.01.01-E.1925), and it was performed in

agreement with the Declaration of Helsinki. All participants

signed informed consent and could withdraw from the study at

any time.

Clinical and neuropsychological
assessment

All subjects underwent a clinical and neuropsychological

evaluation to assess their global cognitive status using theMMSE

(Folstein et al., 1975) and the following cognitive domains:

attention [Color-Word Stroop Test (CSWT)] (Stroop, 1935),

Benton Face Recognition Test (Benton et al., 1994), memory

(Wechsler Memory Scale-Revised Form (WMS-R)) (Wechsler,

1987), Verbal Memory Processes Test (SBST), language (Boston

Naming Test) (Kaplan et al., 1983), visuospatial skills (Benton

Judgement of Line Orientation Test) (Benton et al., 1994),

Clinical Dementia Rating Scale (CDR) (Morris, 1993), Geriatric

Depression Scale (GDS) (Yesavage, 1988), and Neuropsychiatric

Inventory were also used for neuropsychological evaluation.

Experimental design

The included subjects and their companions were informed

briefly about the whole procedure, research, and their rights

before starting the test. They were given an informed consent

form to read carefully and sign. It was made sure that

they understood that they could stop and leave the research

at any time they wished with a guarantee of not facing

any kind of consequences. After the researchers decided the

given information was understood and informed consent was

obtained, the subjects were asked to sit on a chair and the fNIRS

device was set on the head and optodes were calibrated while the

subject was asked to sit silently and in a relaxed position. After

the optimal calibration was set, any kind of devices that may

cause light, sound or any other distracting stimuli were turned

off. When the subject confirmed that they were ready for the

experiment, they were asked to sit relaxed, silent, thinking as

little as possible, with their eyes shut, and try not to sleep, and

then the test was started. Following the 30 s of the beginning

session to check the optodes were working properly as set before

the test, the 5-min recording of the resting state was started

without any warning. After 5min, the recording signal was

briefly checked again and was saved in the following 15 s and

the subject was informed that the test was finished.

Imaging and data analysis

Optical imaging data were collected using a high-density

fNIRS device (NIRSIT, OBELAB, Korea) with 24-light sources

at 780 and 850 nm and 32 detectors, with a sample rate of

8.138Hz. The channels overlap with parts of the dorsolateral and

ventrolateral prefrontal and the upper part of the orbitofrontal

and medial PFC.

For preprocessing, the detector readings were first converted

into concentration changes in oxy- and deoxyhemoglobin by

using the modified Beer–Lambert law (Delpy et al., 1988).

We sought to diminish signal components unrelated to brain

activity by band-pass filtering in the range of 0.01–0.5Hz.

This eliminated the effects of heartbeat (∼1Hz), reduced some

motion artifacts that had sharp transients, and eliminated the

slow baseline drift (Naseer and Hong, 2015). The frequency

range of Mayer waves, with a period of ∼10 s, partly overlaps

with task-evoked hemodynamic responses, and hence, we did

not attempt to filter them out. However, they were not expected

to influence our results, as Mayer waves likely do not correlate

with cognitive processes (Vermeij et al., 2014). Next, we

used windowed standard deviation to quantify the presence

of motion artifacts (Scholkmann et al., 2010). We aimed to

minimize motion artifacts with excursions greater than those

of concurrent physiological effects. We calculated the standard

deviation in nonoverlapping 10-s windows and the median

absolute deviation (MAD) of the set of standard deviations for

each channel. Any window whose standard deviation was >4.5-

MAD values away from the median was considered an outlier

and excluded from subsequent analysis. We visually inspected

the signals from randomly selected time segments to confirm

the validity of this scheme. In addition, we confirmed that the

outliers tended to occur around the same time as increases

in the accelerations measured by the headset. The method

captured all severe deflections, andmany outliers contained only

mild fluctuations, suggesting that our threshold criterion was

conservative. The details of the hardware, channel locations, and

signal preprocessing parameter values methods were described

in a previous study (Keles et al., 2021).

In Keles et al.’s (2021) study, it was shown that the

48 channels with the longest available separation (33.5mm)
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provided the best decoding ability of the subject’s mental state

due to their greater sampling of the cerebral tissue. Accordingly,

we have used signals only from the deeper sampling channels

in this study. Their topographic locations are approximately

indicated by the open circles in Figure 1 and partly overlap

with the bilateral orbitofrontal and ventromedial as well as

the inferior regions of the dorsolateral PFC (Carlén, 2017). To

determine the extent of PFC local engagement, we computed

the standard deviation of the oxyhemoglobin changes in each

channel over adjacent nonoverlapping 10-s windows (Tai and

Chau, 2009; Holper and Wolf, 2011; Aghajani et al., 2017; Keles

et al., 2021).

We have used this feature because greater hemodynamic

response tends to increase the standard deviation of the signal in

a window, while themean of the signal remains close to zero. For

this reason, the window mean of the signal may not be a good

indicator of activation, especially when the evoked response is

brief and followed by a dip. In a previous study, we explored

variables such as the window mean, skewness, and kurtosis and

determined that the standard deviation was the best indicator

for the types of discrimination we pursued (Keles et al., 2021).

Note that the standard deviation or variance has frequently been

used in machine learning studies that used fNIRS signals (Tai

and Chau, 2009; Holper and Wolf, 2011; Aghajani et al., 2017).

Other feature extraction techniques were described by Keshmiri

et al. (2018).

We repeated the calculations in this study by using

only deoxyhemoglobin or by including both oxy- and

deoxyhemoglobin concentration changes. However, these

did not improve classifier performance relative to using

oxyhemoglobin alone. In fact, deoxyhemoglobin alone

resulted in slightly lower accuracies overall. Since this is a

proof-of-concept investigation, we have limited this study to

oxyhemoglobin concentration changes only. Henceforth, we

use the term activation to refer to the standard deviation of the

oxyhemoglobin changes.

We studied the ability of the PFC activations to discriminate

between patients and healthy controls and between different

subgroups of patient participants. To that end, we generated

features for a machine learning approach by averaging the

activation in each channel across the entire recording session

of a participant. Therefore, a feature matrix contained rows

consisting of individual subjects and columns consisting of

channels, and its entries were the session-averaged PFC

activations. The matrix contained a maximum of 48 columns

(channels). Because each subject’s data occurred in only one

row of the feature matrix, the training and test partitions never

contained data from the same subject. The corresponding binary

label vector indicated (1) whether the participant was a patient

or healthy control or, in a subsequent set of studies, (2) whether

the patient participant obtained a high or low score on a

neuropsychological test, where the high–low cut-off was taken

as the median of all patients.

Using part of the data, we assessed multiple filter-type

algorithms for rank ordering our features before feeding them

into a classifier: filters based on (1) Pearson correlation between

a feature and label vector; (2) p-values obtained from chi-

squared tests; and (3) searching for sets of features maximally

associated with the labels and minimally associated with each

other. The chi-squaredmethodwas selected due to its robustness

and the resulting classifier accuracies. Hence, the features were

first prioritized by using chi-squared tests that determined

whether each feature was independent of the label vector

by calculating a p-value. The priority score of a feature was

FIGURE 1

Subject averaged prefrontal cortex activations (color bar units on the right in mM) interpolated from channels with 3.35 cm separations. (A)

Normal subjects (N = 18). (B) Patients (N = 21). Open gray circles indicate the location of the fNIRS channels.
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calculated as the natural logarithm of the reciprocal of its

p-value. The prioritized features were then used to predict

the labels of a subset of the participants using a Support

Vector Machine or Linear Discriminant Analysis trained on

the remaining subset of the participants. The results from the

Support Vector Machine classifier were overall more accurate

hence we only report them in this article. The performance

of the prediction was characterized using its sensitivity and

specificity defined in the following way. In the initial study,

sensitivity was calculated as the ability to correctly identify a

patient, and specificity was calculated as the ability to correctly

identify a healthy control. In other words, considering a positive

prediction as the prediction that the subject is a patient,

the sensitivity of the method was defined as the number of

true positives divided by the sum of true positives and false

negatives. The specificity was the number of true negatives

divided by the sum of true negatives and false positives. In

the subsequent set of studies, the sensitivity was calculated

as the ability to correctly identify a high-scoring patient, and

specificity was calculated as the ability to correctly identify a

low-scoring patient.

The accuracy was found using a 5-fold cross-validation, each

repeated 20 times with different randomly selected partitions.

Before proceeding with the full set of computations, we

considered how the accuracy of a 3-fold, 5-fold, and 10-fold

cross-validation would differ by performing a limited set of

classifications to discriminate patients from normal volunteers.

We considered that having too few folds may not have a

sufficient number of partitions to reveal the true accuracy,

while too many folds may have an insufficient number of

observations per partition for proper training. We found no

clear differences between these cases; however, 5-fold was

selected as a potential compromise. Each cross-validation was

repeated 20 times with randomly different partitions in order

to generate a distribution to assess statistical significance. We

selected 20 repetitions, as a greater number of repetitions

did not appear to affect the result while it substantially

increased the computational load. We did not use leave-one-

out cross-validation as this scheme has only one possible

partition and does not allow one to generate distribution

and may generate biased performance estimates (Varoquaux

et al., 2017). Each feature was standardized by centering

and scaling with the mean and standard deviation of the

corresponding column of the feature matrix. The linear kernel

was selected for Support Vector Machine and its scale was

computed by Matlab using a heuristic procedure. We used a

fixed random number seed for the reproducibility of the results.

Optimization of the box constraint and kernel scale parameters

was tried to discriminate patients from normal volunteers, both

based on Matlab’s grid search algorithms in the range [0.001,

1000]. This significantly increased computing times without a

noticeable improvement in performance; thus, in this study, we

report only results based on Support Vector Machine without

hyperparameter optimization.

In order to examine the ability of a small subset of

the features to discriminate between the targets the above

calculations were repeated by an feeding increasingly larger

number of features (in order of descending priority score)

into the classifier. We used the permutation method to

evaluate the statistical significance of the performance indicators

(Combrisson and Jerbi, 2015; Omurtag et al., 2017). In this

method, the classification analysis was repeated multiple times

with different randomly reshuffled label vectors which led to

null distributions of sensitivity and specificities. Bonferroni-

corrected p-values were calculated using the Wilcoxon signed-

rank test that compared the null distribution with the actual

distribution of sensitivity and specificities calculated from

multiple different 5-fold partitions. Topographic plots of

distributed activations (e.g., Figure 1) were obtained by two-

dimensionally interpolating the individual values from the

48-deep sampling channels. The Matlab functions such as

fscchi2, cvpartition, fitcsvm, and signrank were used in the

above calculations.

TABLE 1 The demographical and neuropsychological test scores of

the patient group with Alzheimer’s disease (AD).

Mean S.E.

Gender 12 F/9M

Age 71,76 2,25

Education 6,41 1,20

Global Evaluation MMSE Total score 20,20 1,14

Executive functions CSWT time (s) 135,42 19,82

CSWT error 13,83 2,92

Digit span (forward) 4,41 0,40

Digit span (backwards) 2,71 0,37

Category fluency 12,53 1,20

Phonemic fluency 17,87 3,44

Memory WMS-R

Logical memory (Immediate) 4,82 0,98

Logical memory (Late) 3,76 0,94

Visual memory (Immediate) 4,20 0,89

Visual memory (Late) 1,27 0,42

Memory SBST

Immediate item count 2,35 0,34

Total score 45,94 5,43

Recall 2,06 0,72

Total recall 8,65 1,19

Visuospatial functions BNT 19,00 1,42

BLOT 14,38 1,27

BFR 39,40 1,48

Emotional state GDS 9,33 1,45

Behavioral evaluation NPI Total score 16,87 3,19

MMSE, Mini-Mental State Evaluation; CWST, Color–Word Stroop Test; WMS-R,

Wechsler Memory Scale–Revised; SBST, Verbal Memory Processes Test; BNT, Boston

Naming Test; BLOT, Benton Line Orientation Test; BFR, Benton Face Recognition Test;

GDS, Geriatric Depression Scale; NPI, Neuropsychiatric Inventory.
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Results

We gathered data from 21 patients with AD, 18 healthy

controls. All the patients underwent a neurological and

neuropsychological examination except for four patients. The

results of neuropsychological tests and the demographic

background of the patients with AD are shown in Table 1.

In this section, we first describe and compare the prefrontal

activations of patients and healthy controls (Figure 1). Then,

by using the chi-squared feature priority score described in the

Methods section, we investigate which optical channels were

best associated with binary distinctions between subgroups of

participants, such as patients vs. healthy controls (Figure 2)

and high-/low-scoring patients on neuropsychological tests

(Figures 4A,B,5A,B). We then use machine learning and a

series of high-priority feature sets with an increasing number

of features, to quantify the ability of optically imaged PFC

activation to discriminate between these subgroups (Figures 3,

4D,E, 5D,E).

Figure 1 suggests that the subject-averaged resting-state

bilateral PFC activation in patients (B) is significantly reduced

relative to healthy controls (A). A comparison of Figure 1A

with the known functional division of the PFC (Carlén, 2017)

implicates, in particular, the dorsolateral PFC as the site of

highest relative activation in the healthy controls (shown in

yellow). This is further reinforced by the distribution of the

feature priority scores shown in Figure 2. These suggest that

the sites of activation that best discriminate the patients with

AD from the healthy controls were clustered particularly (but

not exclusively) in the left dorsolateral PFC. Figure 2A shows

that the priority scores decreased steeply and the priority of the

top three sites (located in the yellow zones in Figure 2B) was

especially more salient than those of the remaining features.

Figure 3 shows that the top four features achieved the highest

accuracy in discriminating patients with AD from healthy

controls (sensitivity 0.76 and specificity 0.68), and the accuracy

tended to decline with the inclusion of an increasing number of

features. The results shown in these plots are given as numerical

figures in Table 2.

Having classified the patients with AD and the healthy

controls, we turned to the more difficult task of discriminating

subgroups within the patient group. We began by using the

Boston Naming Test scores to allocate patients into high-

and low-scoring subgroups separated by the median score

(dotted red vertical line in Figure 4D). The feature priority

ranking declined less steeply than before (Figure 4A), but the

high-ranking features were more heavily clustered in the left

dorsolateral PFC (Figure 4B). Figures 4D,E and Table 3 show

that the maximum accuracy (sensitivity 0.75, specificity 0.72)

could be achieved with only five features.

Discussion

We have shown that resting-state fNIRS recordings

from a small number of prefrontal locations provide a

promising methodology for detecting AD and monitoring its

progression. By using a high-density continuous-wave fNIRS

system, we first verified the relatively lower hemodynamic

activity in the prefrontal cortical areas observed in patients

FIGURE 2

Hemodynamic feature priority scores calculated for purposes of feature selection. (A) Univariate feature priority scores ranked in descending

order calculated using chi-squared tests. (B) The distribution of scores over the prefrontal cortex.
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FIGURE 3

The accuracy (A) sensitivity and (B) specificity of discriminating patients (N = 21) from normal subjects (N = 18) using the Support Vector

Machine and a limited number (x-axis) of the top-ranked hemodynamic features. The accuracy is found from 5-fold cross-validation repeated

20 times with di�erent randomly selected partitions. The black boxes indicate the accuracy and the green boxes indicate the corresponding null

distribution calculated by randomly permuting the labels. Statistical significance calculated from the Kolmogorov–Smirnov test is indicated

using an asterisk (*p < 0.05, Bonferroni corrected). The central mark in a box indicates the median, and the bottom and top edges of the box are

the 25th and 75th percentiles, while the whiskers extend to the most extreme data points not considered outliers.
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FIGURE 4

Discrimination of high-scoring patients (N = 8) from low-scoring patients (N = 7) in the Boston Naming Test, using the Support Vector Machine

and a limited number (x-axis in D and E) of the top-ranked hemodynamic features. (A) Hemodynamic feature priority scores calculated using

chi-squared tests. (B) Topographic distribution of feature scores. (C) Histogram of Boston Naming Test scores of patients. The vertical dotted red

line shows the location of the median score used to distinguish high-scoring patients from low-scoring patients. (D) Sensitivity of discriminating

high-scoring patients. (E) Specificity (*p < 0.05, Bonferroni corrected).
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FIGURE 5

Discrimination of high-scoring patients (N = 8) from low-scoring patients (N = 9) in the Verbal Memory Total Score Recall/15, using the Support

Vector Machine and a limited number of the top-ranked hemodynamic features. (A) Hemodynamic feature priority scores calculated using

chi-squared tests. (B) Topographic distribution of feature scores. (C) Histogram of Boston Naming Test scores of patients. The dotted red line

shows the median score used to distinguish high-scoring patients from low-scoring patients. (D) Sensitivity of discriminating high-scoring

patients. (E) Specificity (*p < 0.05, Bonferroni corrected).
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TABLE 2 The sensitivity and specificity of discriminating patients with

AD from healthy controls.

Number of

features

Sensitivity

(median ± st. dev.)

Specificity

(median ± st. dev.)

2 0.55± 0.10 0.61± 0.08

3 0.60± 0.09 0.56± 0.10

4 0.76± 0.08 0.68± 0.04

5 0.70± 0.09 0.67± 0.10

6 0.67± 0.08 0.67± 0.09

7 0.63± 0.06 0.64± 0.09

8 0.65± 0.08 0.66± 0.07

9 0.61± 0.09 0.62± 0.09

10 0.62± 0.09 0.63± 0.08

The mean and standard deviations of repeated cross-validations are shown (values are

shown in the black boxes in Figure 3).

TABLE 3 The sensitivity and specificity of discriminating high-scoring

patients from low-scoring patients in the Boston Naming Test.

Number of

features

Sensitivity

(median ± st. dev.)

Specificity

(median ± st. dev.)

2 0.63± 0.18 0.50± 0.12

3 0.60± 0.14 0.38± 0.13

4 0.70± 0.19 0.50± 0.13

5 0.75± 0.11 0.72± 0.15

6 0.70± 0.15 0.60± 0.19

7 0.71± 0.15 0.60± 0.17

8 0.73± 0.14 0.63± 0.16

9 0.65± 0.14 0.61± 0.16

10 0.70± 0.11 0.65± 0.18

The median and standard deviations of repeated cross-validations are shown (values are

shown in the black boxes in Figures 4D,E).

with AD (Figure 1). This is well-known from previous

studies (Arai et al., 2006; Herrmann et al., 2008; Ruiz-

Rabelo et al., 2015; Uemura et al., 2016; Yap et al., 2017).

We, then, showed that the accuracy of subsets of optical

channels in predicting the presence and severity of AD

was significantly above chance (Figures 2–5). To the best

of our knowledge, this is the first study in peer-reviewed

literature to use machine learning to quantify the AD-related

sensitivity and specificity of the resting-state fNIRS signals from

the PFC.

Resting-state whole-head fNIRS data from patients with AD

dementia and amnesic MCI and healthy controls were used to

show that the temporal variability of functional connectivity

maps was able to distinguish aMCI [area under the curve

(AUC 82.5%)] or AD (AUC 86.4%) from the healthy controls

(Niu et al., 2019). Further descriptions of related studies can

be found in recent extensive reviews (e.g., Bonilauri et al.,

2020).

Our study has focussed on discovering the locations of

resting-state optical signals from the PFC that provided optimal

accuracy and quantified their sensitivity and specificity. Figure 3

indicated that patients with AD and healthy controls could be

discriminated with a 0.76 sensitivity score (i.e., a false-negative

rate of 24% among the patient group) and a 0.68 specificity

score (a false-positive rate of 32% among the healthy controls)

using only four channels. Figure 4 showed similar outcomes

(with higher specificity and five channels) for discriminating

subgroups of patients with high or low scores in the Boston

Naming Test. We have obtained similar results using the Verbal

Memory Total Score Recall. Figure 4C shows that some patients

in either group had scores close to the median value (the

median was used to separate patients into two groups). Such

close scores in different groups may have reduced the accuracy

of discrimination. However, patients with scores close to the

median could not be removed from this calculation since this

would have reduced the already small size of the data set.

Alternatively, we could have used other classification schemes

[e.g., artificial neural network (ANN)] to predict the continuous

range of scores, however, ANNs require a greater number of

training examples than we had in our patient population.

By definition, sensitivity is reduced by the occurrence of a

higher number of false negatives in the patient group, while

specificity is reduced by a higher number of false positives in

the healthy control group. Thus, the generally higher sensitivity

observed in Figures 3, 4 indicated that PFC hemodynamics was

a more robust marker among the patients than it was among

healthy controls. This could be due to the greater variability of

the signals in the healthy group.

The chance distribution of accuracy is shown by the green

boxes in Figures 3, 4 and indicates the median and range of

values obtained by repeating the 5-fold cross-validation 10

times. The repetitions, with different partitions into training/test

sets and randomly reshuffled labels, yielded values that are

represented by the green boxes. As expected, the chance

accuracies in the Figures fluctuate around 50%. However, they

remained close to 50% only if there were a sufficient number

of patient responses in each of the high-/low-scoring groups (as

was the case with the Boston Naming Test and Verbal Memory

Total Score Recall); we used this as a criterion for excluding the

other types of tests from this study.

Figures 3A,B, 4D,E suggest that the accuracy initially

increased with an increasing number of optical channels

(features) and then remained near a maximum or slightly

declined. This was in accordance with expectations. The initial

increase in accuracy was clearly due to the fact that additional

features brought new information useful for discrimination.

The small declines following the maximum, on the other hand,

may have been due to new features adding little or no useful

information but instead introducing noise into the system that

obscured the differences between groups.

Our study used a technique (fNIRS) that only samples the

upper layers of the cortex and may not directly reveal any
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pathological changes in subcortical regions. This unavoidably

follows from the fact that near-infrared photons cannot

reliably penetrate deeper than 2–3 cm of tissue. However,

this shortcoming is mitigated by the following considerations.

fNIRS provides practical and low-cost applications similar in

technological footprint to electroencephalography. In addition,

subcortical structures are heavily interconnected with PFC

which fNIRS can investigate. In addition, fNIRS can be

combined with EEG (Aghajani et al., 2017; Omurtag et al., 2017)

in order to investigate neurovascular coupling (Keles et al., 2016)

which has been implicated in AD-related functional changes

(Babiloni et al., 2014; Liu et al., 2014). Thus, fNIRS appears to

be a good choice for our study with a reasonable trade-off.

The limitations of our study and possible mitigations are

as follows:

1. Only two types of tests were available with a sufficient

number of patient responses. A greater number of types of

neuropsychological test scores (e.g., Viola et al., 2013) would

improve the validity of our findings.

2. We only collected PFC data, however, the measurement

from additional areas may increase accuracy as there are

differences between patients and healthy controls in parietal

activation (Li R. et al., 2018). This will become more viable as

better-designed headsets and optodes that can conveniently

record through hair become available.

3. We only used resting-state measurements, however, data

collected during cognitive or memory task performance may

increase accuracy as there are clear task-evoked differences

between patients and healthy controls (Arai et al., 2006;

Yeung et al., 2016).

These limitations offer opportunities for further study.

Our results suggest that with further improvements in

instrumentation and possibly in conjunction with concurrent

EEG and neuropsychological tests, a small number of fNIRS

channels located in the PFC can be a valuable screening tool for

diagnosing and monitoring AD.
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